Publicaciones

2024

Vicente, A., Villanueva, M., Caballero, P. A., Lazaridou, A., Biliaderis, C. G., & Ronda, F. (2024). Microwave treatment enhances the physical and sensory quality of quinoa-enriched gluten-free bread. Food Hydrocolloids, 155, 110244https://doi.org/10.1016/j.foodhyd.2024.110244

Vicente, A., Villanueva, M., Caballero, P. A., Lazaridou, A., Biliaderis, C. G., & Ronda, F. (2024). Flours from microwave-treated buckwheat grains improve the physical properties and nutritional quality of gluten-free bread. Food Hydrocolloids, 149, 109644. https://doi.org/10.1016/j.foodhyd.2023.109644

Mendoza-Pérez, R.J., Náthia-Neves, G., Blanco, B., Vela, A.J., Caballero, P.A., Ronda, F. (2024).  Physicochemical characterisation of seeds, oil and defatted cake of three hempseed varieties cultivated in Spain. Foods, 13(4), 531. https://doi.org/10.3390/foods13040531

Villanueva, M., Vicente, A., Náthia-Neves, G., Ronda, F. (2024). Microwave-treated rice flour halves the need of hydroxypropyl methylcellulose in the formulation of gluten-free bread. Food Hydrocolloids, 109738. https://doi.org/10.1016/j.foodhyd.2024.109738

Náthia-Neves, G., Villanueva, M., Ronda, F. (2024). Impact of lipids on the functional, rheological, pasting and thermal properties of ultrasound-processed canary seed flours. Food Hydrocolloids, 150, 109727. https://doi.org/10.1016/j.foodhyd.2024.109727

2023

Gutiérrez, A.L., Rico, D., Ronda, F., Caballero, P.A., Martín-Diana, A.B. (2023). The Application of High-Hydrostatic-Pressure Processing to Improve the Quality of Baked Products: A Review. Foods, 13(1), 130. https://doi.org/10.3390/foods13010130

Vicente, A., Villanueva, M.,  Caballero, P.A., Lazaridou, A., Biliaderis, C., Ronda, F. (2023). Flours from microwave-treated buckwheat grains improve the physical properties and nutritional quality of gluten-free bread. Food Hydrocolloids, 149, 109644. https://doi.org/10.1016/j.foodhyd.2023.109644

Náthia-Neves, G., Calix-Rivera, C.S., Villanueva, M., Ronda, F. (2023). Microwave radiation induces modifications in the protein fractions of tef flours and modulates their derived techno-functional properties. International Journal of Biological Macromolecules, 253, 126908. https://doi.org/10.1016/j.ijbiomac.2023.126908

Gutiérrez, A.L., Villanueva, M., Rico, D., Harasym, J., Ronda, F., Martín-Diana, A.B., Caballero, P.A. (2023). Valorisation of Buckwheat By-Product as a Health-Promoting Ingredient Rich in Fibre for the Formulation of Gluten-Free Bread. Foods, 12(14), 2781. https://doi.org/10.3390/foods12142781 

Mauro, R.R., Vela, A.J., Ronda, F. (2023). Impact of Starch Concentration on the Pasting and Rheological Properties of Gluten-Free Gels. Effects of Amylose Content and Thermal and Hydration Properties. Foods, 12 (12), 2281. https://doi.org/10.3390/foods12122281 

Vela, A.J., Villanueva, M.,  Ronda, F. (2023). Physical modification caused by acoustic cavitation improves rice flour bread-making performance. LWT, 183, 114950. https://doi.org/10.1016/j.lwt.2023.114950 

Vicente, A., Villanueva, M.,  Caballero, P.A., Muñoz, J.M., Ronda, F. (2023). Microwave modification of quinoa grains at constant and varying water content modulates changes in structural and physico-chemical properties of the resulting flour. Foods, 12 (7), 1421. https://doi.org/10.3390/foods12071421

Calix-Rivera, C.S., Villanueva, M., Náthia-Neves, G., Ronda, F. (2023). Changes on techno-functional, thermal, rheological, and microstructural properties of tef flours induced by microwave radiation – Development of new improved gluten-free ingredients. Foods, 12 (6), 1345. https://doi.org/10.3390/foods12061345

Abebe, W., Náthia-Neves, G., Calix-Rivera, C.S., Villanueva, M., Ronda, F. (2023). Lipase inactivation kinetics of tef flour with microwave radiation and impact on the rheological properties of the gels made from treated flour. Molecules, 28, 2298. https://doi.org/10.3390/molecules28052298

Vela, A.J., Villanueva, M., Ozturk, O.K., Hamaker, B., Ronda, F. (2023). Modification of the microestructure of tef [Eragrostis tef (Zucc.) Trotter] flour ultrasonicated at different temperatures. Impact on its techno-functional and rheological properties. Current Research in Food Science, 6, 100456. https://doi.org/10.1016/j.crfs.2023.100456

Vela, A.J., Villanueva, M., Náthia-Neves, G., Ronda, F. (2023). Impact of solubilized substances on the techno-functional, pasting and rheological properties of ultrasound-modified rice, tef, corn and quinoa flours. Foods, 12 (3), 484. https://doi.org/10.3390/foods12030484

Vela, A.J., Villanueva, M., Li, C., Hamaker, B., Ronda, F. (2023). Ultrasound treatment of tef [Eragrostis tef (Zucc.) Trotter] flour rupture starch α-(1,4) bonds and fragment amylose with modification of gelatinization properties. LWT – Food Science and Technology, 174, 114463. https://doi.org/10.1016/j.lwt.2023.114463

Vicente, A., Villanueva, M., Caballero, P.A., Muñoz, J.M., Ronda, F. (2023). Buckwheat grains treated with microwave radiation: Impact on the techno-functional, thermal, structural, and rheological properties of flour. Food Hydrocolloids, 137, 108328. https://doi.org/10.1016/j.foodhyd.2022.108328

2022

Solaesa, A.G., Villanueva, M., Vela, A.J., Ronda, F. (2022). Impact of microwave radiation on in vitro starch digestibility, structural and thermal properties of rice flour. From dry to wet treatments. International Journal of Biological Macromolecules, 222, 1768 – 1777. https://doi.org/10.1016/j.ijbiomac.2022.09.262

Villanueva, M., Abebe, W., Pérez-Quirce, S., Ronda, F. (2022). Impact of the variety of tef [Eragrostis tef (Zucc.) Trotter] on physical, sensorial and nutritional properties of gluten-free breads. Foods, 11 (7), 1017. https://doi.org/10.3390/foods11071017

Gutiérrez, A.L., Rico, D., Ronda, F., Martín-Diana, A.B., Caballero, P.A. (2022). Development of a gluten-free whole grain flour by combining soaking and high hydrostatic pressure treatment for enhancing functional, nutritional and bioactive properties. Journal of Cereal Science, 105, 103458. https://doi.org/10.1016/j.jcs.2022.103458

Deriu, A.G., Vela, A.J., Ronda, F. (2022). Techno-functional and gelling properties of Acha (Fonio) (Digitaria exilis stapf) Flour: A study of its potential as a new gluten-free starch source in industrial applications. Foods, 11 (2), 183. https://doi.org/10.3390/foods11020183

2021

Acevedo, B.A., Villanueva, M., Chaves, M.G., Avanza, M.V., Ronda, F. (2021). Modification of structural and physicochemical properties of cowpea (Vigna unguiculata) starch by hydrothermal and ultrasound treatments. Food Hydrocolloids, 124, 107266. https://doi.org/10.1016/j.foodhyd.2021.107266

Vela, A.J., Villanueva, M., Ronda, F. (2021). Low-frequency ultrasonication modulates the impact of annealing on physicochemical properties and functional properties of rice flour. Food Hydrocolloids, 120, 106933. https://doi.org/10.1016/j.foodhyd.2021.106933

Solaesa, A.G., Villanueva, M., Muñoz, J.M., Ronda, F. (2021). Dry-heat treatment vs. heat-moisture treatment assisted by microwave radiation: Techno-functional and rheological modifications of rice flour. LWT – Food Science and Technology, 141, 110851. https://doi.org/10.1016/j.lwt.2021.110851

Vela, A.J., Villanueva, M., Solaesa, A.G., Ronda, F. (2021). Impact of high-intensity ultrasound waves on structural, functional, thermal and rheological properties of rice flour and its biopolymers structural features. Food Hydrocolloids, 113, 106480. https://doi.org/10.1016/j.foodhyd.2020.106480

Villanueva, M., Abebe, W., Collar, C., Ronda, F. (2021). Tef [Eragrostis tef (Zucc.) Trotter] variety determines viscoelastic and thermal properties of gluten-free dough and bread quality. LWT – Food Science and Technology, 135, 110065. https://doi.org/10.1016/j.lwt.2020.110065

2020

Rico, D., Villaverde, A., Martinez-Villaluenga, C., Gutiérrez, A.L., Caballero, P.A., Ronda, F., Peñas, E., Frias, J., Martin Diana, A.B. (2020). Application of Autoclave Treatment for Development of a Natural Wheat Bran Antioxidant Ingredient. Foods, 9 (6), 781. https://doi.org/10.3390/foods9060781

Solaesa, A.G., Villanueva, M., Vela, A.J., Ronda, F. (2020). Protein and lipid enrichment of quinoa (cv.Titicaca) by dry fractionation. Techno-functional, thermal and rheological properties of milling fractions. Food Hydrocolloids, 105, 105770. https://doi.org/10.1016/j.foodhyd.2020.105770

Collar, C., Villanueva, M., Ronda, F. (2020). Structuring diluten wheat matrices: impact of heat moisture treatment on protein aggregation and viscoelasticity of hydrated composite flours. Food and Bioprocess Technology, 13, 475 – 487. https://doi.org/10.1007/s11947-020-02406-z

2019

Rico, D., Ronda, F., Villanueva, M., Pérez Montero, C., Martín-Diana, A.B. (2019). Development of healthy gluten-free crackers from White and Brown tef (Eragrostis tef Zucc.) flours. Heliyon, 5, e02598. https://doi.org/10.1016/j.heliyon.2019.e02598

Solaesa, A.G., Villanueva, M., Beltrán, S., Ronda, F. (2019). Characterization of Quinoa Defatted by Supercritical Carbon Dioxide. Starch Enzymatic Susceptibility and Structural, Pasting and Thermal Properties. Food and Bioprocess Technology, 12, 1593-1602. https://doi.org/10.1007/s11947-019-02329-4

Acevedo, B.A., Villanueva, M., Chaves, M.G., Avanza, M.V., Ronda, F. (2019). Starch enzymatic hydrolysis, structural, thermal and rheological properties of pigeon pea (Cajanus cajan) and dolichos bean (Dolichos lab-lab) legume starches.  International Journal of Food Science and Technology, 55 (2), 712 – 719. https://doi.org/10.1111/ijfs.14334

Villanueva, M., Harasym, J., Muñoz, J.M., Ronda, F. (2019). Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocolloids, 90, 472 – 481. https://doi.org/10.1016/j.foodhyd.2018.12.048

2018

Assefa, Y., Emire, S., Villanueva, M., Abebe, W., Ronda, F. (2018). Influence of milling type on tef injera quality. Food Chemistry, 266, 155 – 160. https://doi.org/10.1016/j.foodchem.2018.05.126

Villanueva, M., De Lamo, B., Harasym, J., Ronda, F. (2018). Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches. Carbohydrate Polymers, 201, 374 – 381. https://doi.org/10.1016/j.carbpol.2018.08.052

Villanueva, M., Pérez-Quirce, S., Collar, C., Ronda, F. (2018). Impact of acidification and protein fortification on rheological and thermal properties of wheat, corn, potato and tapioca starch-based gluten-free bread doughs. LWT – Food Science and Technology, 96, 446 – 454. https://doi.org/10.1016/j.lwt.2018.05.069

Pérez-Quirce, S., Caballero, P. A., Vela, A. J., Villanueva, M., Ronda, F. (2018). Impact of yeast and fungi (1-3)(1-6)-b-glucan  concentrates on viscoelastic behavior and bread making performance of gluten-free rice-based doughs. Food Hydrocolloids, 79, 382 – 390. https://doi.org/10.1016/j.foodhyd.2018.01.004

Villanueva, M., Harasym, J., Muñoz, J.M., Ronda, F. (2018). Microwave absorption capacity of rice flour. Impact of the radiation on rice flour microstructure, thermal and viscometric properties. Journal of Food Engineering, 224, 156 – 164. https://doi.org/10.1016/j.jfoodeng.2017.12.030

Villanueva, M., Ronda, F., Moschakis, T., Lazaridou, A., Biliaderis, C. (2018). Impact of acidification and protein fortification on thermal properties of rice, potato and tapioca starches and rheological behaviour of their gels. Food Hydrocolloids, 79, 20-29. https://doi.org/10.1016/j.foodhyd.2017.12.022

2017

Pérez-Quirce, S., Ronda, F., Lazaridou, A., Biliaderis, C. (2017). Effect of Microwave Radiation Pretreatment of Rice Flour on Gluten-Free Breadmaking and Molecular Size of β-Glucans in the Fortified Breads. Food and Bioprocess Technology, 10(8), 1412-1421. https://doi.org/10.1007/s11947-017-1910-7

2016

Pérez-Quirce, S., Ronda, F., Melendre, C., Lazaridou, A., Biliaderis, C. (2016). Inactivation of endogenous rice flour β-glucanase by microwave radiation and impact on physico-chemical properties of the treated flour. Food and Bioprocess Technology, 9(9), 1562-1573. https://doi.org/10.1007/s11947-016-1741-y

Ronda, F., Pérez-Quirce, S., Villanueva, M. (2016). Rheological Properties of Gluten-Free Bread Doughs. Relationship with Bread Quality. In: Ahmed, J. Ptaszek, P. and Basu, S. (Eds), Advances in Food Rheology and Applications. Elsevier. https://doi.org/10.1016/B978-0-08-100431-9.00012-7

2015

Ronda, F., Abebe, W., Pérez-Quire, S., Collar, C. (2015). Suitability of tef varieties in mixed wheat flour bread matrices: A physico-chemical and nutritional approach. Journal of Cereal Science, 64, 139-146. https://doi.org/10.1016/j.jcs.2015.05.009

Abebe, W., Ronda, F., Villanueva, M., Collar, C. (2015). Effect of tef [Eragrostis tef (Zucc.) Trotter] grain flour addition on viscoelastic properties and stickiness of wheat dough matrices and bread loaf volume. European Food Research and Technology, 241, 469 – 478. https://doi.org/0.1007/s00217-015-2476-0

Ronda, F., Pérez-Quirce, S., Lazaridou, A., Biliaderis, C. (2015). Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread quality: a physico-chemical and nutritional perspective. Food Hydrocolloids, 48, 198 – 207. https://doi.org/10.1016/j.foodhyd.2015.02.031

Abebe, W., Collar, C., Ronda. (2015). Impact of variety type and particle size distribution on starchenzymatic hydrolysis and functional properties of tef flours. Carbohydrate Polymers, 115, 260-268. https://doi.org/10.1016/j.carbpol.2014.08.080

Villanueva, M., Mauro, R.R., Collar, C., Ronda, F. (2015). Acidification of protein-enriched rice starch doughs: effects on breadmaking. European Food Research and Technology, 240, 783 – 794. https://doi.org/10.1007/s00217-014-2384-8

2014

Ronda, F., Villanueva, M., Collar, C. (2014). Influence of acidification on dough viscoelasticity of gluten-free rice starch-based dough matrices enriched with exogenous protein. LWT -Food Science and Technology, 59, 12-20. https://doi.org/10.1016/j.lwt.2014.05.052

Pérez-Quirce, S., Collar, C., Ronda, F. (2014). Significance of healthy viscous dietary fibres on the performance of gluten-free rice-based formulated breads. International Journal of Food Science and Technology, 49, 1375-1382. https://doi.org/10.1111/ijfs.12439

Ronda, F., Quilez, J., Pando, V., Roos, Y. (2014). Fermentation time and fiber effects on recrystallization of starch components and staling of bread from frozen part-baked bread. Journal of Food Engineering, 131, 116-123. https://doi.org/10.1016/j.jfoodeng.2014.01.023

2013

Ronda, F., Pérez-Quirce, S., Angioloni, A., Collar, C. (2013). Impact of viscous dietary fibres on the viscoelastic behaviour of gluten-free formulated rice doughs: A fundamental and empirical rheological approach. Food Hydrocolloids, 32, 252-262. https://doi.org/10.1016/j.foodhyd.2013.01.014

Acevedo, B.A., Avanza, M.V., Cháves, M.G., Ronda, F. (2013). Gelation, thermal and pasting properties of pigeon pea (Cajanus cajan L.), dolichos bean (Dolichos lablab L.) and jack bean (Canavalia ensiformis) flours. Journal of Food Engineering, 119, 65 – 71. https://doi.org/10.1016/j.jfoodeng.2013.05.014

2012

Ronda, F., Rivero, P., Caballero, P.A., Quilez, J. (2012). High insoluble fiber content increases in vitro starch digestibility in partially baked breads. International Journal of Food Science and Nutrition, 63(8), 971-977. https://doi.org/10.3109/09637486.2012.690025

2011

Blanco, C.A., Ronda, F., Pérez, B., Pando, V. (2011). Improving gluten-free bread quality by enrichment with acidic food additives. Food Chemistry, 127, 1204 – 1209. https://doi.org/10.1016/j.foodchem.2011.01.127

Ronda, F., Roos, Y. (2011). Staling of fresh and frozen gluten-free bread. Journal of Cereal Science, 53(3), 340-346. https://doi.org/10.1016/j.jcs.2011.02.004

Ronda, F., Caballero, P.A., Quilez, J., Roos, Y. (2011). Staling of frozen partly and fully baked breads. Study of the combined effect of amylopectin recrystallization and water content on bread firmness. Journal of Cereal Science, 53(1), 97 – 103. https://doi.org/10.1016/j.jcs.2010.10.003

Ronda, F., Oliete, B., Gómez, M., Caballero, P.A., Pando, V. (2011). Rheological study of layer cake batters made with soybean protein isolate and different starch sources. Journal of Food Engineering, 102(3), 272- 277. https://doi.org/10.1016/j.jfoodeng.2010.09.001